login
A207613
Triangle of coefficients of polynomials v(n,x) jointly generated with A207612; see Formula section.
3
1, 2, 2, 3, 4, 4, 5, 8, 8, 8, 8, 16, 20, 16, 16, 13, 30, 44, 48, 32, 32, 21, 56, 92, 112, 112, 64, 64, 34, 102, 188, 256, 272, 256, 128, 128, 55, 184, 372, 560, 672, 640, 576, 256, 256, 89, 328, 724, 1184, 1552, 1696, 1472, 1280, 512, 512, 144, 580, 1384
OFFSET
1,2
COMMENTS
Only column 1 contains odd numbers.
column 1: A000045 (Fibonacci sequence)
row sums: A002878 (bisection of Lucas sequence)
top edge: A000079 (powers of 2)
FORMULA
u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = u(n-1,x) + 2x*v(n-1,x) + 1, where u(1,x) = 1, v(1,x) = 1.
With offset 0, the Riordan array ((1 + z)/(1 - z - z^2), 2*z*(1 - z)/(1 - z - z^2)) with o.g.f. (1 + z)/(1 - z - z^2 - x*(2*z - 2*z^2)) = 1 + (2 + 2*x)*z + (3 + 4*x + 4*x^2)*z^2 + .... - Peter Bala, Dec 30 2015
EXAMPLE
First five rows:
1
2 2
3 4 4
5 8 8 8
8 16 20 16 16
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207612 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207613 *)
CROSSREFS
A000045 (column 1), A000079 (main diagonal), A002878 (row sums). Cf. A207612, A208510.
Sequence in context: A097793 A015742 A015754 * A321424 A289677 A113967
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Feb 19 2012
STATUS
approved