login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207613
Triangle of coefficients of polynomials v(n,x) jointly generated with A207612; see Formula section.
3
1, 2, 2, 3, 4, 4, 5, 8, 8, 8, 8, 16, 20, 16, 16, 13, 30, 44, 48, 32, 32, 21, 56, 92, 112, 112, 64, 64, 34, 102, 188, 256, 272, 256, 128, 128, 55, 184, 372, 560, 672, 640, 576, 256, 256, 89, 328, 724, 1184, 1552, 1696, 1472, 1280, 512, 512, 144, 580, 1384
OFFSET
1,2
COMMENTS
Only column 1 contains odd numbers.
column 1: A000045 (Fibonacci sequence)
row sums: A002878 (bisection of Lucas sequence)
top edge: A000079 (powers of 2)
FORMULA
u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = u(n-1,x) + 2x*v(n-1,x) + 1, where u(1,x) = 1, v(1,x) = 1.
With offset 0, the Riordan array ((1 + z)/(1 - z - z^2), 2*z*(1 - z)/(1 - z - z^2)) with o.g.f. (1 + z)/(1 - z - z^2 - x*(2*z - 2*z^2)) = 1 + (2 + 2*x)*z + (3 + 4*x + 4*x^2)*z^2 + .... - Peter Bala, Dec 30 2015
EXAMPLE
First five rows:
1
2 2
3 4 4
5 8 8 8
8 16 20 16 16
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207612 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207613 *)
CROSSREFS
A000045 (column 1), A000079 (main diagonal), A002878 (row sums). Cf. A207612, A208510.
Sequence in context: A097793 A015742 A015754 * A321424 A289677 A113967
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Feb 19 2012
STATUS
approved