Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Mar 07 2023 11:20:05
%S 1,2,4,1,8,4,16,12,1,32,32,6,64,80,24,1,128,192,80,8,256,448,240,40,1,
%T 512,1024,672,160,10,1024,2304,1792,560,60,1,2048,5120,4608,1792,280,
%U 12,4096,11264,11520,5376,1120,84,1,8192,24576,28160,15360
%N Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.
%C As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 04 2012
%C The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - _Zagros Lalo_, Jul 31 2018
%C If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - _Zagros Lalo_, Jul 31 2018
%D Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.
%H Jean-Luc Baril and José Luis Ramírez, <a href="https://arxiv.org/abs/2302.12741">Descent distribution on Catalan words avoiding ordered pairs of Relations</a>, arXiv:2302.12741 [math.CO], 2023.
%H S. Halici, <a href="http://www.emis.de/journals/AUA/acta29/Paper9-Acta29-2012.pdf">On some Pell polynomials </a>, Acta Universitatis Apulensis, No. 29/2012, pp. 105-112.
%H Zagros Lalo, <a href="/A207538/a207538.pdf">First layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n</a>
%H Zagros Lalo, <a href="/A207538/a207538_1.pdf">First layer skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n</a>
%F u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
%F From _Philippe Deléham_, Mar 04 2012: (Start)
%F With 0<=k<=n:
%F Mirror image of triangle in A099089.
%F Skew version of A038207.
%F Riordan array (1/(1-2*x), x^2/(1-2*x)).
%F G.f.: 1/(1-2*x-y*x^2).
%F Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
%F T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
%F T(n,k) = A013609(n-k, n-2*k+1). - _Johannes W. Meijer_, Sep 05 2013
%F From _Tom Copeland_, Feb 11 2016: (Start)
%F A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
%F Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
%F The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
%F (End)
%e First seven rows:
%e 1
%e 2
%e 4...1
%e 8...4
%e 16..12..1
%e 32..32..6
%e 64..80..24..1
%e (2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
%e 1
%e 2, 0
%e 4, 1, 0
%e 8, 4, 0, 0
%e 16, 12, 1, 0, 0
%e 32, 32, 6, 0, 0, 0
%e 64, 80, 24, 1, 0, 0, 0
%e 128, 192, 80, 8, 0, 0, 0, 0
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
%t v[n_, x_] := u[n - 1, x] + v[n - 1, x]
%t Table[Factor[u[n, x]], {n, 1, z}]
%t Table[Factor[v[n, x]], {n, 1, z}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A207537, |A028297| *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A207538, |A133156| *)
%t t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* _Zagros Lalo_, Jul 31 2018 *)
%t t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n - k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ] // Flatten (* _Zagros Lalo_, Jul 31 2018 *)
%Y Cf. A028297, A207537, A133156, A038207, A099089.
%Y Cf. A053117, A097610, A091894.
%Y Cf. A013609, A038207.
%Y Cf. A128099.
%K nonn,tabf
%O 1,2
%A _Clark Kimberling_, Feb 18 2012