login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207360
Numbers n, not squarefree, satisfying A055231(n) = A055231(n + A055231(n)).
0
8, 40, 56, 88, 104, 136, 152, 184, 232, 248, 280, 288, 296, 328, 344, 376, 424, 440, 472, 488, 520, 536, 568, 584, 616, 632, 664, 675, 680, 712, 728, 760, 776, 808, 824, 856, 872, 904, 920, 952, 1016, 1048, 1064, 1096, 1112, 1144, 1160, 1192, 1208, 1240, 1256
OFFSET
1,1
COMMENTS
A055231(n) is the powerfree part of n.
This sequence is infinite because the numbers of the form n = 8p, where p is prime, are in the sequence : A055231(8p) = p and A055231(8p + p) = A055231(9p) = p.
The numbers such that n and n+1 are a pair of consecutive powerful numbers (the again infinite A060355) are also in the sequence because A055231 (A060355(n)) = A055231(A060355 (n+1)) = 1.
EXAMPLE
136 is in the sequence because A055231(136) = A055231(17*2^3) = 17, A055231(136 + 17) = A055231(153) = A055231(17*3^2) = 17.
MAPLE
isA013929 := proc(n)
n>3 and not numtheory[issqrfree](n) ;
end proc:
isA207360 := proc(n)
isA013929(n) and (A055231(n)- A055231(n+ A055231(n))=0);
end proc:
for n from 1 to 5000 do
if isA207360(n) then
printf(`%d, `, n);
end if;
end do: # (adapted from A140394).
MATHEMATICA
rad[n_] := Times @@ FactorInteger[n][[All, 1]];
A055231[n_] := Denominator[n/rad[n]^2];
Select[Range[2000], !SquareFreeQ[#] && A055231[#] == A055231[# + A055231[#]]&] (* Jean-François Alcover, Jun 18 2024 *)
PROG
(PARI) isA013929(n)={
(n>3) && !issquarefree(n)
}
isA207360(n)={
isA013929(n) && ( A055231(n)-A055231(n+A055231(n)) ==0)
}
{ for(n=1, 1300, if(isA207360(n), print1(n" ") ) ; ) ;
} /* R. J. Mathar, Mar 12 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 17 2012
STATUS
approved