login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305075
a(n) = 32*n - 24 (n>=1).
2
8, 40, 72, 104, 136, 168, 200, 232, 264, 296, 328, 360, 392, 424, 456, 488, 520, 552, 584, 616, 648, 680, 712, 744, 776, 808, 840, 872, 904, 936, 968, 1000, 1032, 1064, 1096, 1128, 1160, 1192, 1224, 1256, 1288, 1320, 1352, 1384, 1416, 1448, 1480, 1512, 1544, 1576
OFFSET
1,1
COMMENTS
a(n) (n>=2) is the second Zagreb index of the single oxide chain SOX(n), defined pictorially in the Simonraj et al. reference (Fig. 4, where SOX(9) is shown marked as OX(1,9)).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of SL(n) is M(SL(n);x,y) = 2*x^2*y^2 + 2*n*x^2*y^4 + (n - 2)*x^4*y^4 (n>=2).
LINKS
F. Simonraj and A. George, Topological properties of few poly oxide, poly silicate, DOX and DSL networks, International J. of Future Computer and Communication, 2, No. 2, 2013, 90-95.
FORMULA
a(n) = A063164(n) for n > 1.
From Colin Barker, May 29 2018: (Start)
G.f.: 8*x*(1 + 3*x) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)
MAPLE
seq(32*n - 24, n = 1 .. 50);
MATHEMATICA
32*Range[60]-24 (* or *) LinearRecurrence[{2, -1}, {8, 40}, 60] (* Harvey P. Dale, Mar 13 2022 *)
PROG
(GAP) List([1..50], n->32*n-24); # Muniru A Asiru, May 27 2018
(PARI) Vec(8*x*(1 + 3*x) / (1 - x)^2 + O(x^50)) \\ Colin Barker, May 29 2018
CROSSREFS
Sequence in context: A213345 A207360 A226904 * A069083 A014642 A211631
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 26 2018
STATUS
approved