login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206411
Number of (n+1) X 6 0..2 arrays with every 2 X 3 or 3 X 2 subblock having an equal number of clockwise and counterclockwise edge increases.
1
94761, 13148043, 1876995285, 269845754715, 38883964087761, 5607670598448153, 808953988411331487, 116711118064834566675, 16839058163900510312613, 2429571141623141719964529, 350544958031922890718492975
OFFSET
1,1
COMMENTS
Column 5 of A206414.
LINKS
FORMULA
Empirical: a(n) = 326*a(n-1) -40232*a(n-2) +2625135*a(n-3) -102664380*a(n-4) +2483992594*a(n-5) -34054261073*a(n-6) +103742898710*a(n-7) +5425256115513*a(n-8) -108748874196029*a(n-9) +804683710872587*a(n-10) +2446678419327350*a(n-11) -105763975134186403*a(n-12) +881252218606156059*a(n-13) -995930084566858402*a(n-14) -41089452399216500107*a(n-15) +354301862067296697562*a(n-16) -786316291223027549741*a(n-17) -6833495162564130297562*a(n-18) +58894027033833075549821*a(n-19) -126174717794483840139905*a(n-20) -646419224150759600616616*a(n-21) +4858118678559133567903611*a(n-22) -7937915943690187608650707*a(n-23) -39018859939361196862635245*a(n-24) +216243213933651127286563249*a(n-25) -211108025777725211955307225*a(n-26) -1451724837983321979560422264*a(n-27) +5326972804948486086071230574*a(n-28) -1553776221107177921870106372*a(n-29) -31628411893576285291975387285*a(n-30) +72451639942200250029607652155*a(n-31) +30437559570605803869248014809*a(n-32) -396205187667773917409624594067*a(n-33) +528745042199175081528405237379*a(n-34) +690922961048740174580726697966*a(n-35) -2857385678388258875963047326199*a(n-36) +1853983705732808906593921494594*a(n-37) +5631327428566960787847827653286*a(n-38) -11926837565080346359469292396177*a(n-39) +1306634704432038839386265213304*a(n-40) +23760492003556783103212164780910*a(n-41) -28773237046156020272258832541327*a(n-42) -11139732502642525897601218183651*a(n-43) +57044915187466168684882488318548*a(n-44) -39301873629215708342907550983245*a(n-45) -38346144352222006815102242400887*a(n-46) +81250880311335856546165574959573*a(n-47) -28215415604332959931456606864272*a(n-48) -56724884111560914353370204260817*a(n-49) +70166815167995640081205601978139*a(n-50) -7516611640501782949119740142544*a(n-51) -45867015225519496282772970999220*a(n-52) +37093155885480928803041333007577*a(n-53) +2463345273627342113172168257660*a(n-54) -21475456406439655375685209518924*a(n-55) +11954018013055489620711427131837*a(n-56) +2299785430994497692988229377550*a(n-57) -5875877499685008598684447479201*a(n-58) +2280011629545083635037121735457*a(n-59) +672255618582305423900990337036*a(n-60) -928012582168332927633475694274*a(n-61) +237859929856085748014898299278*a(n-62) +102909452202118791193929516721*a(n-63) -83482695914804464255741959715*a(n-64) +11481398938406435255695989428*a(n-65) +8829802594826302806896776065*a(n-66) -4124483213111295097407111355*a(n-67) +74512575374728286264782785*a(n-68) +413647780649841499350298486*a(n-69) -101081218157260142111005917*a(n-70) -13060806063257772877571391*a(n-71) +9845861207796847640927530*a(n-72) -853704833929096428290937*a(n-73) -425800621353993002646301*a(n-74) +102452645011725971110187*a(n-75) +5642589248948002835528*a(n-76) -4532595847904168190307*a(n-77) +268647036281784693325*a(n-78) +104769732997178224719*a(n-79) -14620868331429200758*a(n-80) -1163575402960936720*a(n-81) +317239605542649458*a(n-82) +912000032134398*a(n-83) -3645417691373520*a(n-84) +113607271814048*a(n-85) +21783470035840*a(n-86) -1026098651472*a(n-87) -55400600736*a(n-88) +2760604544*a(n-89) +23077376*a(n-90).
EXAMPLE
Some solutions for n=4:
..1..1..1..0..2..1....0..0..0..2..1..2....1..0..2..1..2..1....2..1..2..2..2..0
..2..1..1..1..0..2....1..0..1..0..2..1....2..1..0..2..2..2....2..1..1..1..1..2
..0..2..2..1..1..0....0..1..0..0..0..2....0..2..1..0..2..0....0..2..2..2..1..1
..2..0..2..2..1..0....0..0..0..2..2..2....1..0..2..1..0..0....0..2..0..2..2..1
..1..2..1..2..2..1....2..2..0..2..0..2....2..1..0..2..1..1....1..0..0..0..2..2
CROSSREFS
Sequence in context: A030091 A128376 A216122 * A128389 A258420 A206105
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 07 2012
STATUS
approved