The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206411 Number of (n+1) X 6 0..2 arrays with every 2 X 3 or 3 X 2 subblock having an equal number of clockwise and counterclockwise edge increases. 1

%I

%S 94761,13148043,1876995285,269845754715,38883964087761,

%T 5607670598448153,808953988411331487,116711118064834566675,

%U 16839058163900510312613,2429571141623141719964529,350544958031922890718492975

%N Number of (n+1) X 6 0..2 arrays with every 2 X 3 or 3 X 2 subblock having an equal number of clockwise and counterclockwise edge increases.

%C Column 5 of A206414.

%H R. H. Hardin, <a href="/A206411/b206411.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 326*a(n-1) -40232*a(n-2) +2625135*a(n-3) -102664380*a(n-4) +2483992594*a(n-5) -34054261073*a(n-6) +103742898710*a(n-7) +5425256115513*a(n-8) -108748874196029*a(n-9) +804683710872587*a(n-10) +2446678419327350*a(n-11) -105763975134186403*a(n-12) +881252218606156059*a(n-13) -995930084566858402*a(n-14) -41089452399216500107*a(n-15) +354301862067296697562*a(n-16) -786316291223027549741*a(n-17) -6833495162564130297562*a(n-18) +58894027033833075549821*a(n-19) -126174717794483840139905*a(n-20) -646419224150759600616616*a(n-21) +4858118678559133567903611*a(n-22) -7937915943690187608650707*a(n-23) -39018859939361196862635245*a(n-24) +216243213933651127286563249*a(n-25) -211108025777725211955307225*a(n-26) -1451724837983321979560422264*a(n-27) +5326972804948486086071230574*a(n-28) -1553776221107177921870106372*a(n-29) -31628411893576285291975387285*a(n-30) +72451639942200250029607652155*a(n-31) +30437559570605803869248014809*a(n-32) -396205187667773917409624594067*a(n-33) +528745042199175081528405237379*a(n-34) +690922961048740174580726697966*a(n-35) -2857385678388258875963047326199*a(n-36) +1853983705732808906593921494594*a(n-37) +5631327428566960787847827653286*a(n-38) -11926837565080346359469292396177*a(n-39) +1306634704432038839386265213304*a(n-40) +23760492003556783103212164780910*a(n-41) -28773237046156020272258832541327*a(n-42) -11139732502642525897601218183651*a(n-43) +57044915187466168684882488318548*a(n-44) -39301873629215708342907550983245*a(n-45) -38346144352222006815102242400887*a(n-46) +81250880311335856546165574959573*a(n-47) -28215415604332959931456606864272*a(n-48) -56724884111560914353370204260817*a(n-49) +70166815167995640081205601978139*a(n-50) -7516611640501782949119740142544*a(n-51) -45867015225519496282772970999220*a(n-52) +37093155885480928803041333007577*a(n-53) +2463345273627342113172168257660*a(n-54) -21475456406439655375685209518924*a(n-55) +11954018013055489620711427131837*a(n-56) +2299785430994497692988229377550*a(n-57) -5875877499685008598684447479201*a(n-58) +2280011629545083635037121735457*a(n-59) +672255618582305423900990337036*a(n-60) -928012582168332927633475694274*a(n-61) +237859929856085748014898299278*a(n-62) +102909452202118791193929516721*a(n-63) -83482695914804464255741959715*a(n-64) +11481398938406435255695989428*a(n-65) +8829802594826302806896776065*a(n-66) -4124483213111295097407111355*a(n-67) +74512575374728286264782785*a(n-68) +413647780649841499350298486*a(n-69) -101081218157260142111005917*a(n-70) -13060806063257772877571391*a(n-71) +9845861207796847640927530*a(n-72) -853704833929096428290937*a(n-73) -425800621353993002646301*a(n-74) +102452645011725971110187*a(n-75) +5642589248948002835528*a(n-76) -4532595847904168190307*a(n-77) +268647036281784693325*a(n-78) +104769732997178224719*a(n-79) -14620868331429200758*a(n-80) -1163575402960936720*a(n-81) +317239605542649458*a(n-82) +912000032134398*a(n-83) -3645417691373520*a(n-84) +113607271814048*a(n-85) +21783470035840*a(n-86) -1026098651472*a(n-87) -55400600736*a(n-88) +2760604544*a(n-89) +23077376*a(n-90).

%e Some solutions for n=4:

%e ..1..1..1..0..2..1....0..0..0..2..1..2....1..0..2..1..2..1....2..1..2..2..2..0

%e ..2..1..1..1..0..2....1..0..1..0..2..1....2..1..0..2..2..2....2..1..1..1..1..2

%e ..0..2..2..1..1..0....0..1..0..0..0..2....0..2..1..0..2..0....0..2..2..2..1..1

%e ..2..0..2..2..1..0....0..0..0..2..2..2....1..0..2..1..0..0....0..2..0..2..2..1

%e ..1..2..1..2..2..1....2..2..0..2..0..2....2..1..0..2..1..1....1..0..0..0..2..2

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 07 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 23:05 EDT 2022. Contains 353886 sequences. (Running on oeis4.)