login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030091
Primes such that p and p^2 have same set of digits.
2
94583, 100469, 102953, 107251, 110923, 184903, 279863, 285101, 406951, 459521, 493621, 499423, 504821, 684581, 752681, 758141, 758941, 786431, 836291, 843701, 928637, 976513, 980261, 1008947, 1009859, 1024399, 1029647
OFFSET
1,1
LINKS
FORMULA
Equals A000040 INTERSECTION A029793. - Jonathan Vos Post, Jul 06 2008
MATHEMATICA
Select[Prime[Range[82000]], Union[IntegerDigits[#]]== Union[ IntegerDigits [#^2]]&] (* Harvey P. Dale, Aug 12 2011 *)
PROG
(PARI) isA030091(n)=isprime(n)&&Set(Vec(Str(n)))==Set(Vec(Str(n^2))) \\ Charles R Greathouse IV, Jun 28 2011
(Haskell)
import Data.List (nub, sort)
import Data.Function (on)
a030091 n = a030091_list !! (n-1)
a030091_list =
filter (\x -> ((==) `on` (nub . sort . show)) x (x^2)) a000040_list
-- Reinhard Zumkeller, Aug 11 2011
CROSSREFS
Sequence in context: A348021 A248067 A252323 * A128376 A216122 A206411
KEYWORD
nonn,base,nice
STATUS
approved