login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206309
Villegas-Zagier polynomial V(3*n) evaluated at x=0.
3
1, -2, -152, -6848, -8103296, 22483912960, -8062284861440, 196434444070666240, 532650564250569441280, 2039228675045199496806400, -5209573728611533514689740800, 1172773847164346785332278906060800, -14811687653648930753369603156895334400, -612441229040578815278149020969838051328000
OFFSET
0,2
COMMENTS
Numbers B_k in Villegas/Zagier "Which primes are sums of two cubes?"
REFERENCES
H. Cohen, Number Theory. Volume I: Tools and Diophantine Equations, Springer-Verlag, 2007, p. 378.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..156 (terms 0..66 from Vincenzo Librandi)
Fernando Rodriguez Villegas, Don Zagier, Which primes are sums of two cubes?, CMS Conference Proceedings 15 (1995), pp. 295-306.
PROG
(PARI) { A206309(n) = my(p0, p1, q); p0 = 0; p1 = 1; for(m=1, 3*n, q = (8*x^3-1)*deriv(p1) - (16*(m-1)+3)*x^2*p1 - 4*(m-1)*(2*(m-1)-1)*x*p0; p0 = p1; p1 = q; ); subst(p1, x, 0); } \\ Max Alekseyev, Dec 05 2017
CROSSREFS
The first column of A166243.
Sequence in context: A024245 A113576 A102458 * A265880 A064436 A012605
KEYWORD
sign
AUTHOR
Joerg Arndt, Feb 06 2012
EXTENSIONS
Edited by Max Alekseyev, Dec 05 2017
STATUS
approved