%I #34 Dec 05 2017 11:47:58
%S 1,-2,-152,-6848,-8103296,22483912960,-8062284861440,
%T 196434444070666240,532650564250569441280,2039228675045199496806400,
%U -5209573728611533514689740800,1172773847164346785332278906060800,-14811687653648930753369603156895334400,-612441229040578815278149020969838051328000
%N Villegas-Zagier polynomial V(3*n) evaluated at x=0.
%C Numbers B_k in Villegas/Zagier "Which primes are sums of two cubes?"
%D H. Cohen, Number Theory. Volume I: Tools and Diophantine Equations, Springer-Verlag, 2007, p. 378.
%H Seiichi Manyama, <a href="/A206309/b206309.txt">Table of n, a(n) for n = 0..156</a> (terms 0..66 from Vincenzo Librandi)
%H Fernando Rodriguez Villegas, Don Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/files/mpim/95-61/fulltext.pdf">Which primes are sums of two cubes?</a>, CMS Conference Proceedings 15 (1995), pp. 295-306.
%o (PARI) { A206309(n) = my(p0, p1, q); p0 = 0; p1 = 1; for(m=1, 3*n, q = (8*x^3-1)*deriv(p1) - (16*(m-1)+3)*x^2*p1 - 4*(m-1)*(2*(m-1)-1)*x*p0; p0 = p1; p1 = q; ); subst(p1,x,0); } \\ _Max Alekseyev_, Dec 05 2017
%Y The first column of A166243.
%Y Cf. A166244, A159843, A166246
%K sign
%O 0,2
%A _Joerg Arndt_, Feb 06 2012
%E Edited by _Max Alekseyev_, Dec 05 2017