login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206173
Number of 5X(n+1) 0..3 arrays with every 2X2 subblock in a row having an equal number of equal diagonal or equal antidiagonal elements, adjacent rows differing in this number, and new values 0..3 introduced in row major order
1
7566, 238182, 10599630, 526154358, 26687737998, 1361622567126, 69556988274126, 3554493803008374, 181655826475052430, 9283912580951238486, 474476945914016761038, 24249338412340473326262, 1239323942269866573049230
OFFSET
1,1
COMMENTS
Row 4 of A206169
LINKS
FORMULA
Empirical: a(n) = 56*a(n-1) +456*a(n-2) -39352*a(n-3) -34802*a(n-4) +11171648*a(n-5) -13122200*a(n-6) -1683933432*a(n-7) +3150972781*a(n-8) +150157165048*a(n-9) -306037231512*a(n-10) -8315004801408*a(n-11) +16418689080408*a(n-12) +290940321892032*a(n-13) -530173145158992*a(n-14) -6430873844504880*a(n-15) +10691431333128297*a(n-16) +89212552369342056*a(n-17) -137284826957648712*a(n-18) -772840127333187576*a(n-19) +1119417831060679350*a(n-20) +4169317975104649536*a(n-21) -5734329723412512984*a(n-22) -14005155678216709464*a(n-23) +18392800450061228427*a(n-24) +28975458499899160680*a(n-25) -36522779580082867752*a(n-26) -35550691451531386704*a(n-27) +43238482722793040004*a(n-28) +23504910388393904064*a(n-29) -27737731642915897344*a(n-30) -6398289766745501184*a(n-31) +7365473103579123456*a(n-32)
EXAMPLE
Some solutions for n=4
..0..1..0..0..0....0..0..0..0..0....0..1..1..0..0....0..0..0..1..0
..2..3..2..1..2....0..0..0..0..0....0..2..2..2..1....1..2..2..1..0
..0..2..0..2..0....0..1..0..3..0....1..0..2..0..2....1..1..2..2..1
..0..3..0..1..1....2..3..0..1..1....1..0..2..3..2....2..3..3..0..1
..2..0..2..0..1....2..2..3..0..1....1..1..0..2..0....0..2..3..3..0
CROSSREFS
Sequence in context: A235961 A235572 A351382 * A205427 A252163 A031585
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 04 2012
STATUS
approved