login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252163
Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 2 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 2 3 4 6 or 7
1
7570, 2075, 3925, 9058, 26129, 67674, 170398, 513123, 1339027, 3379880, 10307117, 26956608, 68147852, 209426605, 547887143, 1386788304, 4287133295, 11210580840, 28398463398, 88206429815, 230468768285, 584130500480, 1821376961241
OFFSET
1,1
COMMENTS
Column 4 of A252167
LINKS
FORMULA
Empirical: a(n) = a(n-1) +46*a(n-3) -37*a(n-4) +3*a(n-5) -648*a(n-6) +276*a(n-7) -130*a(n-8) +2922*a(n-9) +1191*a(n-10) +1623*a(n-11) -8591*a(n-12) +764*a(n-13) -5519*a(n-14) +35693*a(n-15) +13723*a(n-16) +23630*a(n-17) -78954*a(n-18) -36321*a(n-19) -76141*a(n-20) +153949*a(n-21) +136286*a(n-22) +198739*a(n-23) -123359*a(n-24) -253309*a(n-25) -387042*a(n-26) -61732*a(n-27) +308047*a(n-28) +507541*a(n-29) +292755*a(n-30) -185328*a(n-31) -412025*a(n-32) -265509*a(n-33) +39057*a(n-34) +151454*a(n-35) +46031*a(n-36) -27968*a(n-37) +5697*a(n-38) +9585*a(n-39) +1755*a(n-40) -8046*a(n-41) -2241*a(n-42) +1917*a(n-43) +216*a(n-44) +54*a(n-45) -54*a(n-46) for n>50
EXAMPLE
Some solutions for n=4
..3..2..2..3..2..2....2..2..3..2..2..3....2..2..3..2..2..0....0..2..0..0..2..0
..1..0..3..1..3..0....2..2..3..2..2..0....0..3..1..0..3..1....3..0..3..3..0..3
..3..2..2..3..2..2....0..3..1..3..3..1....2..2..3..2..2..3....0..2..0..0..2..0
..3..2..2..3..2..2....2..2..3..2..2..3....2..2..3..2..2..3....0..2..0..0..2..0
..1..3..3..1..0..3....2..2..3..2..2..0....3..0..1..3..3..1....3..0..3..3..0..3
..3..2..2..3..2..2....3..0..1..3..3..1....2..2..3..2..2..3....0..2..0..0..2..0
CROSSREFS
Sequence in context: A351382 A206173 A205427 * A031585 A031765 A205740
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 14 2014
STATUS
approved