login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206170
Number of 2 X (n+1) 0..3 arrays with every 2 X 2 subblock in a row having an equal number of equal diagonal or equal antidiagonal elements, adjacent rows differing in this number, and new values 0..3 introduced in row major order.
2
15, 85, 641, 5257, 44585, 385465, 3375401, 29817817, 264999305, 2364834745, 21162573161, 189737549977, 1703284356425, 15303437762425, 137574211418921, 1237227532571737, 11129405572871945, 100130796836040505
OFFSET
1,1
COMMENTS
Row 1 of A206169.
LINKS
FORMULA
Empirical: a(n) = 18*a(n-1) - 101*a(n-2) + 192*a(n-3) - 108*a(n-4).
Conjectures from Colin Barker, Mar 04 2018: (Start)
G.f.: x*(15 - 185*x + 626*x^2 - 576*x^3) / ((1 - x)*(1 - 2*x)*(1 - 6*x)*(1 - 9*x)).
a(n) = (9 + 3*2^n + 2^(1+n)*3^n + 2*9^n) / 3.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..1..0..2....0..0..0..0..1....0..0..0..1..2....0..1..2..3..2
..3..2..1..3..3....1..1..1..2..1....0..1..0..0..1....3..1..2..1..0
CROSSREFS
Cf. A206169.
Sequence in context: A160747 A064058 A138322 * A177882 A199897 A367228
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 04 2012
STATUS
approved