login
A205579
a(n) = round(r^n) where r is the smallest Pisot number (real root r=1.3247179.. of x^3-x-1).
2
1, 1, 2, 2, 3, 4, 5, 7, 9, 13, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, 1497, 1983, 2627, 3480, 4610, 6107, 8090, 10717, 14197, 18807, 24914, 33004, 43721, 57918, 76725, 101639, 134643, 178364, 236282, 313007, 414646, 549289, 727653, 963935, 1276942, 1691588, 2240877, 2968530, 3932465
OFFSET
0,3
LINKS
Eric Weisstein: Pisot Number.
FORMULA
G.f.: (1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3).
MATHEMATICA
CoefficientList[Series[(1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 19 2012 *)
PROG
(PARI)
default(realprecision, 110);
default(format, "g.15");
r=real(polroots(x^3-x-1)[1])
v=vector(66, n, round(r^(n-1)) )
(PARI) Vec((1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3)+O(x^66))
CROSSREFS
Cf. A112639 (definition using floor() instead of round()).
Cf. A060006 (decimal expansion of r=1.32471795724475...).
Sequence in context: A064324 A173090 A032277 * A089047 A133498 A282949
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 29 2012
STATUS
approved