This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032277 Number of ways to partition n elements into pie slices each with an odd number of elements allowing the pie to be turned over. 1
 1, 1, 2, 2, 3, 4, 5, 7, 9, 13, 16, 25, 31, 48, 64, 98, 133, 208, 291, 454, 657, 1021, 1510, 2358, 3545, 5535, 8442, 13200, 20319, 31835, 49353, 77435, 120711, 189673, 296854, 467159, 733363, 1155646, 1818594, 2869377, 4524081 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..500 C. G. Bower, Transforms (2) FORMULA "DIK" (bracelet, indistinct, unlabeled) transform of 1, 0, 1, 0, ... (odds) G.f.: (x*(1 + x - x^4)/((1 - x)*(1 + x)*(1 - x^2 - x^4)) + Sum_{d>0} phi(d)*log((1 - x^(2*d))/(1 - x^d - x^(2*d)))/d)/2. - Andrew Howroyd, Jun 20 2018 PROG (PARI) seq(n)={Vec(x*(1 + x - x^4)/((1 - x)*(1 + x)*(1 - x^2 - x^4)) + sum(d=1, n, eulerphi(d)/d*log((1-x^(2*d))/(1-x^d-x^(2*d)) + O(x*x^n))))/2} \\ Andrew Howroyd, Jun 20 2018 CROSSREFS Sequence in context: A072493 A064324 A173090 * A205579 A089047 A133498 Adjacent sequences:  A032274 A032275 A032276 * A032278 A032279 A032280 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 03:27 EST 2018. Contains 318052 sequences. (Running on oeis4.)