The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205010 Least k such that n divides s(k)-s(j) for some j satisfying 1<=j<k, where s(j)=C(2j-2,j-1). 9
2, 3, 4, 3, 3, 4, 4, 5, 4, 5, 8, 7, 6, 4, 8, 5, 5, 4, 4, 8, 7, 8, 5, 7, 5, 6, 7, 7, 6, 8, 12, 5, 8, 5, 8, 10, 10, 8, 9, 9, 6, 7, 16, 8, 10, 11, 8, 7, 8, 5, 7, 10, 8, 7, 10, 7, 8, 6, 20, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
See A204892 for a discussion and guide to related sequences.
LINKS
MATHEMATICA
s[n_] := s[n] = Binomial[2 (n - 1), n - 1];
z1 = 700; z2 = 60;
Table[s[n], {n, 1, 30}] (* A000984 *)
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A205008 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
Table[d[n], {n, 1, z2}] (* A205009 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205010 *)
Table[j[n], {n, 1, z2}] (* A205011 *)
Table[s[k[n]], {n, 1, z2}] (* A205012 *)
Table[s[j[n]], {n, 1, z2}] (* A205013 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205014 *)
Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205015 *)
CROSSREFS
Sequence in context: A322808 A352899 A119352 * A204932 A079086 A017839
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 22 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 04:31 EDT 2024. Contains 372807 sequences. (Running on oeis4.)