This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205000 Least k such that n divides s(k)-s(j) for some j satisfying 1<=j
 2, 2, 3, 2, 4, 3, 3, 4, 3, 4, 6, 4, 7, 3, 4, 4, 6, 3, 6, 4, 5, 6, 4, 5, 6, 7, 9, 7, 13, 4, 9, 4, 6, 6, 5, 8, 9, 6, 8, 6, 7, 5, 12, 6, 8, 4, 8, 5, 7, 6, 7, 8, 16, 9, 6, 7, 9, 13, 13, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A204892 for a discussion and guide to related sequences. LINKS MATHEMATICA s[n_] := s[n] = 3^n - 2^n; z1 = 500; z2 = 60; Table[s[n], {n, 1, 30}]      (* A001047 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}]      (* A205105 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] Table[d[n], {n, 1, z2}]  (* A205106 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 Table[k[n], {n, 1, z2}]                  (* A205000 *) Table[j[n], {n, 1, z2}]                  (* A205107 *) Table[s[k[n]], {n, 1, z2}]               (* A205108 *) Table[s[j[n]], {n, 1, z2}]               (* A205109 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A205110 *) Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205111 *) CROSSREFS Cf. A001047, A204892, A205111. Sequence in context: A086375 A107324 A023522 * A066241 A060025 A067399 Adjacent sequences:  A204997 A204998 A204999 * A205001 A205002 A205003 KEYWORD nonn AUTHOR Clark Kimberling, Jan 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 05:48 EST 2018. Contains 318215 sequences. (Running on oeis4.)