login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204437 Symmetric matrix: f(i,j)=((i+j+1)^2 mod 3), by (constant) antidiagonals. 3
0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

A block matrix over {0,1}.  For guides to related matrices and permanents, see A204435 and A204263.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

Northwest corner:

0 1 1 0 1 1

1 1 0 1 1 0

1 0 1 1 0 1

0 1 1 0 1 1

1 1 0 1 1 0

1 0 1 1 0 1

MATHEMATICA

f[i_, j_] := Mod[(1 + i + j)^2, 3];

m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

TableForm[m[8]] (* 8x8 principal submatrix *)

Flatten[Table[f[i, n + 1 - i],

  {n, 1, 14}, {i, 1, n}]]         (* A204437 *)

Permanent[m_] :=

  With[{a = Array[x, Length[m]]},

   Coefficient[Times @@ (m.a), Times @@ a]];

Table[Permanent[m[n]], {n, 1, 22}]   (* A204438 *)

CROSSREFS

Cf. A204438, A204435.

Sequence in context: A226162 A276398 A204549 * A257799 A182067 A196147

Adjacent sequences:  A204434 A204435 A204436 * A204438 A204439 A204440

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Jan 15 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 12:55 EST 2016. Contains 278945 sequences.