login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204342 a(n) = (-1)^n * Sum_{2*m + 1 | 2*n + 1} (-1)^m (2*m + 1)^4. 2
1, 80, 626, 2400, 6481, 14640, 28562, 50080, 83522, 130320, 192000, 279840, 391251, 524960, 707282, 923520, 1171200, 1502400, 1874162, 2284960, 2825762, 3418800, 4057106, 4879680, 5762401, 6681760, 7890482, 9164640, 10425600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 315.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of phi(x)^4 * psi(x^2)^2 * (phi(x)^4 + 64 * x * psi(x^2)^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Expansion of q^(-1/2) * eta(q^2)^14 * (eta(q)^8 + 80 * q * eta(q^4)^8) / (eta(q)^8 * eta(q^4)^4) in powers of q.

a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = ((p^4)^(e+1) + 1) / (p^4 + 1) if p == 3 (mod 4), b(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4).

G.f.: Sum_{k > 0} (2*k - 1)^4 * x^(2*k - 1) / (1 + x^(4*k - 2)).

a(n) = A050468(2*n + 1).

EXAMPLE

1 + 80*x + 626*x^2 + 2400*x^3 + 6481*x^4 + 14640*x^5 + 28562*x^6 + ...

q + 80*q^3 + 626*q^5 + 2400*q^7 + 6481*q^9 + 14640*q^11 + 28562*q^13 + ...

a(1) = 80 since (-1)^1 * ( (-1)^0 * 1^4 + (-1)^1 * 3^4) = 80 where 1 and 3 are the odd divisors of 3 = 2*1 + 1.

MATHEMATICA

QP:= QPochhammer[q]; a[n_]:= SeriesCoefficient[QP[q^2]^14* (QP[q]^8 + 80*q*QP[q^4]^8)/(QP[q]^8*QP[q^4]^4), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 11 2018 *)

PROG

(PARI) {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, (-1)^(d\2) *  d^4))}

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^14 * (eta(x + A)^8 + 80 * x * eta(x^4 + A)^8) / (eta(x + A)^8 * eta(x^4 + A)^4), n))}

CROSSREFS

Cf. A050468.

Sequence in context: A107624 A068782 A255478 * A235090 A211693 A164753

Adjacent sequences:  A204339 A204340 A204341 * A204343 A204344 A204345

KEYWORD

nonn

AUTHOR

Michael Somos, Jan 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 06:23 EST 2020. Contains 338699 sequences. (Running on oeis4.)