login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204342
a(n) = (-1)^n * Sum_{2*m + 1 | 2*n + 1} (-1)^m (2*m + 1)^4.
2
1, 80, 626, 2400, 6481, 14640, 28562, 50080, 83522, 130320, 192000, 279840, 391251, 524960, 707282, 923520, 1171200, 1502400, 1874162, 2284960, 2825762, 3418800, 4057106, 4879680, 5762401, 6681760, 7890482, 9164640, 10425600
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 315.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of phi(x)^4 * psi(x^2)^2 * (phi(x)^4 + 64 * x * psi(x^2)^4) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^2)^14 * (eta(q)^8 + 80 * q * eta(q^4)^8) / (eta(q)^8 * eta(q^4)^4) in powers of q.
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = ((p^4)^(e+1) + 1) / (p^4 + 1) if p == 3 (mod 4), b(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4).
G.f.: Sum_{k > 0} (2*k - 1)^4 * x^(2*k - 1) / (1 + x^(4*k - 2)).
a(n) = A050468(2*n + 1).
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^5/96 = 3.187705... . - Amiram Eldar, Dec 29 2023
EXAMPLE
1 + 80*x + 626*x^2 + 2400*x^3 + 6481*x^4 + 14640*x^5 + 28562*x^6 + ...
q + 80*q^3 + 626*q^5 + 2400*q^7 + 6481*q^9 + 14640*q^11 + 28562*q^13 + ...
a(1) = 80 since (-1)^1 * ( (-1)^0 * 1^4 + (-1)^1 * 3^4) = 80 where 1 and 3 are the odd divisors of 3 = 2*1 + 1.
MATHEMATICA
QP:= QPochhammer[q]; a[n_]:= SeriesCoefficient[QP[q^2]^14* (QP[q]^8 + 80*q*QP[q^4]^8)/(QP[q]^8*QP[q^4]^4), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 11 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, (-1)^(d\2) * d^4))}
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^14 * (eta(x + A)^8 + 80 * x * eta(x^4 + A)^8) / (eta(x + A)^8 * eta(x^4 + A)^4), n))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jan 14 2012
STATUS
approved