The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204340 The number of words of length n created with the letters a,b,c with at least as many a's as b's and at least as many b's as c's and no adjacent letters forming the pattern bba. 1
 1, 1, 3, 10, 21, 57, 182, 426, 1167, 3679, 8991, 24873, 77492, 194449, 541194, 1670783, 4267991, 11926782, 36559601, 94604822, 265135713, 808106960, 2111760491, 5931204471, 17993213402, 47385794268, 133315710843, 402849979395, 1067608305030, 3007697623335 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 EXAMPLE For n=1 the a(1)=1 solution is: a For n=2 the a(2)=3 solutions are: aa,ab,ba For n=3 the a(3)=10 solutions are: aaa,aab,aba,abc,acb,baa,bac,bca,cab,cba MAPLE makebbaavoiders := proc (n) local out, tout, i;    if n = 0 then return [[]] end if;    tout := makebbaavoiders(n-1);    out := [];    for i to nops(tout) do    if 2 <= nops(tout[i]) and tout[i][-1] = 1 and tout[i][-2] = 1 then        out := [op(out), [op(tout[i]), 1], [op(tout[i]), 2]]    else        out := [op(out), [op(tout[i]), 0], [op(tout[i]), 1], [op(tout[i]), 2]]    end if end do;    return out; end proc; count := proc (lst, val)     return nops(select(proc (x) options operator, arrow; x = val end proc, lst)) end proc; nops(select(proc (w) options operator, arrow; count(w, 2) <= count(w, 1) end proc, select(proc (w) options operator, arrow; count(w, 1) <=count(w, 0) end proc, makebbaavoiders(7)))); # second Maple program: a:= n-> add(add(add(w(na, nb, n-na-nb, t), t=0..2),              nb=ceil((n-na)/2)..na), na=ceil(n/3)..n): w:= proc(a, b, c, t) option remember;       `if`(a=0 and b=0 and c=0, `if`(t=0, 1, 0),       `if`(a<0 or b<0 or c<0, 0, `if`(t=0, w(a-1, b, c, 0)+        w(a-1, b, c, 1) +w(a, b, c-1, 0) +w(a, b, c-1, 1)+        w(a, b, c-1, 2), `if`(t=1, w(a, b-1, c, 0),        w(a, b-1, c, 1) +w(a, b-1, c, 2)))))     end: seq(a(n), n=0..40);  # Alois P. Heinz, May 07 2012 MATHEMATICA a[n_] := Sum[Sum[Sum[w[na, nb, n-na-nb, t], {t, 0, 2}], {nb, Ceiling[(n-na)/2], na}], {na, Ceiling[n/3], n}]; w[a_, b_, c_, t_] := w[a, b, c, t] =   If[a == 0 && b == 0 && c == 0, If[t == 0, 1, 0],   If[a < 0 || b < 0 || c < 0, 0, If[t == 0, w[a - 1, b, c, 0] +   w[a - 1, b, c, 1] + w[a, b, c - 1, 0] + w[a, b, c - 1, 1] +   w[a, b, c - 1, 2], If[t == 1, w[a, b - 1, c, 0],   w[a, b - 1, c, 1] + w[a, b - 1, c, 2]]]]]; a /@ Range[0, 40] (* Jean-François Alcover, Nov 20 2020, after Alois P. Heinz *) CROSSREFS Cf. A174982. Sequence in context: A008837 A176098 A081950 * A331017 A207646 A071563 Adjacent sequences:  A204337 A204338 A204339 * A204341 A204342 A204343 KEYWORD nonn AUTHOR Jeff McManus, Jan 14 2012 EXTENSIONS a(1)-a(13) confirmed and a(14) added by John W. Layman, Jan 18 2012 a(0) inserted and extended beyond a(14) by Alois P. Heinz, May 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 08:55 EDT 2022. Contains 353826 sequences. (Running on oeis4.)