The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203627 Numbers which are both 9-gonal (nonagonal) and 10-gonal (decagonal). 3
 1, 1212751, 977965238701, 788633124418157851, 635955328796073362530201, 512835649051022518566661395751, 413551693065406705688396809494274501, 333488912390817262631483541451235285166451, 268926125929366270527488184087670639619302551601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity, a(n)/a(n-1)) = (2*sqrt(2)+sqrt(7))^8 = 403201+107760*sqrt(14). LINKS Index entries for linear recurrences with constant coefficients, signature (806403, -806403, 1). FORMULA G.f.: x*(1+406348*x+451*x^2) / ((1-x)*(1-806402*x+x^2)). a(n) = 806402*a(n-1)-a(n-2)+406800. a(n) = 806403*a(n-1)-806403*a(n-2)+a(n-3). a(n) = 1/448*((15+2*sqrt(14))*(2*sqrt(2)+sqrt(7))^(8*n-6)+(15-2*sqrt(14))*(2*sqrt(2)-sqrt(7))^(8*n-6)-226). a(n) = floor(1/448*(15+2*sqrt(14))*(2*sqrt(2)+sqrt(7))^(8*n-6)). EXAMPLE The second number that is both nonagonal and decagonal is A001106(589) = A001107(551) = 1212751. Hence a(2) = 1212751. MATHEMATICA LinearRecurrence[{806403, -806403, 1}, {1, 1212751, 977965238701}, 9] CROSSREFS Cf. A203628, A203629, A001107, A001106. Sequence in context: A274833 A206042 A092696 * A235910 A234997 A213703 Adjacent sequences:  A203624 A203625 A203626 * A203628 A203629 A203630 KEYWORD nonn,easy AUTHOR Ant King, Jan 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 09:45 EST 2022. Contains 350598 sequences. (Running on oeis4.)