OFFSET
1,2
COMMENTS
As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity, a(n)/a(n-1)) = (2*sqrt(2)+sqrt(7))^4 = 449+120*sqrt(14).
LINKS
Index entries for linear recurrences with constant coefficients, signature (899, -899, 1).
FORMULA
G.f.: x*(1-348*x+11*x^2) / ((1-x)*(1-898*x+x^2)).
a(n) = 898*a(n-1)-a(n-2)-336.
a(n) = 899*a(n-1)-899*a(n-2)+a(n-3).
a(n) = 1/112*((sqrt(7)+7*sqrt(2))*(2*sqrt(2)+sqrt(7))^(4*n-3)-(sqrt(7)-7*sqrt(2))*(2*sqrt(2)-sqrt(7))^(4*n-3)+42).
a(n) = ceiling(1/112*(sqrt(7)+7*sqrt(2))*(2*sqrt(2)+sqrt(7))^(4*n-3)).
EXAMPLE
The second number that is both 9-gonal (nonagonal) and 10-gonal (decagonal) is A001107(551) = 1212751. Hence a(2) = 551.
MATHEMATICA
LinearRecurrence[{899, -899, 1}, {1, 551, 494461}, 12]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ant King, Jan 06 2012
STATUS
approved