OFFSET
1,2
COMMENTS
As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity, a(n)/a(n-1)) = (2+sqrt(3))^4 = 97+56*sqrt(3).
LINKS
Index entries for linear recurrences with constant coefficients, signature (195, -195, 1).
FORMULA
G.f.: x*(1-60*x-5*x^2) / ((1-x)*(1-194*x+x^2)).
a(n) = 194*a(n-1)-a(n-2)-64.
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3).
a(n) = 1/24*((1+2*sqrt(3))*(2+sqrt(3))^(4*n-3)+(1-2*sqrt(3))*(2-sqrt(3))^(4*n-3)+8).
a(n) = ceiling(1/24*(1+2*sqrt(3))*(2+sqrt(3))^(4*n-3)).
EXAMPLE
The second octagonal number that is also decagonal is A000567(135) = 54405. Hence a(2) = 135.
MATHEMATICA
LinearRecurrence[{195, -195, 1}, {1, 135, 26125}, 14]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ant King, Jan 05 2012
STATUS
approved