login
A203447
Number of (n+1)X4 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) such that rows of b(i,j) and columns of c(i,j) are lexicographically nondecreasing
1
32, 80, 321, 1177, 4200, 13777, 42112, 120522, 325918, 838830, 2069033, 4920266, 11341301, 25458409, 55884995, 120402167, 255405453, 534912676, 1108733446, 2279008959, 4653553590, 9452873217, 19124629018, 38573101568, 77618789808
OFFSET
1,1
COMMENTS
Column 3 of A203452
LINKS
FORMULA
Empirical: a(n) = 13*a(n-1) -76*a(n-2) +262*a(n-3) -583*a(n-4) +847*a(n-5) -726*a(n-6) +132*a(n-7) +561*a(n-8) -869*a(n-9) +704*a(n-10) -362*a(n-11) +119*a(n-12) -23*a(n-13) +2*a(n-14) for n>17
EXAMPLE
Some solutions for n=7
..0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..0
..0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1....0..0..0..0
..0..0..1..0....0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..1
..0..0..1..0....0..1..0..1....0..0..1..0....0..1..0..1....0..0..0..1
..0..0..1..1....1..0..1..1....0..0..1..1....0..1..1..0....0..0..1..0
..0..1..0..0....1..0..1..1....0..1..1..0....1..1..0..0....0..0..1..1
..0..1..0..0....0..1..1..0....0..1..1..0....1..1..0..0....1..1..0..0
..1..1..1..1....1..1..0..1....1..1..1..0....1..1..1..1....1..1..1..0
CROSSREFS
Sequence in context: A209378 A182466 A234133 * A340701 A043410 A044170
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 02 2012
STATUS
approved