login
A203446
Number of (n+1) X 3 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) such that rows of b(i,j) and columns of c(i,j) are lexicographically nondecreasing.
1
16, 34, 80, 174, 376, 786, 1624, 3310, 6704, 13506, 27136, 54414, 109000, 218194, 436616, 873486, 1747264, 3494850, 6990064, 13980526, 27961496, 55923474, 111847480, 223695534, 447391696, 894784066, 1789568864, 3579138510
OFFSET
1,1
COMMENTS
Column 2 of A203452.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +5*a(n-4) -2*a(n-5).
Empirical g.f.: 2*x*(8 - 15*x + 4*x^2 + 11*x^3 - 6*x^4) / ((1 - x)^3*(1 + x)*(1 - 2*x)). - Colin Barker, Jun 04 2018
EXAMPLE
Some solutions for n=10:
..0..0..1....0..0..0....0..0..1....0..0..1....1..0..1....0..0..0....0..0..0
..0..0..1....0..0..0....0..0..1....0..0..1....0..1..0....0..0..1....0..0..0
..0..1..0....0..0..1....0..0..1....0..0..1....1..0..1....0..0..1....0..0..0
..1..0..1....0..1..0....0..0..1....0..0..1....0..1..0....0..0..1....0..0..0
..1..0..1....1..0..1....0..0..1....0..1..0....1..0..1....0..1..0....0..0..1
..1..0..1....0..1..0....0..1..0....0..1..0....0..1..0....1..0..1....0..1..1
..0..1..0....0..1..0....1..0..1....0..1..0....1..0..1....1..0..1....0..1..1
..0..1..0....1..1..0....0..1..1....0..1..0....0..1..1....0..1..0....1..1..0
..0..1..0....1..1..0....0..1..1....0..1..1....1..1..1....0..1..0....1..1..0
..0..1..0....1..1..0....1..1..1....0..1..1....1..1..1....0..1..0....1..1..0
..0..1..1....1..1..0....1..1..1....0..1..1....1..1..1....1..1..0....1..1..1
CROSSREFS
Cf. A203452.
Sequence in context: A350522 A132760 A209377 * A153819 A185459 A279712
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 02 2012
STATUS
approved