%I #5 Mar 31 2012 12:36:56
%S 32,80,321,1177,4200,13777,42112,120522,325918,838830,2069033,4920266,
%T 11341301,25458409,55884995,120402167,255405453,534912676,1108733446,
%U 2279008959,4653553590,9452873217,19124629018,38573101568,77618789808
%N Number of (n+1)X4 0..1 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) such that rows of b(i,j) and columns of c(i,j) are lexicographically nondecreasing
%C Column 3 of A203452
%H R. H. Hardin, <a href="/A203447/b203447.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 13*a(n-1) -76*a(n-2) +262*a(n-3) -583*a(n-4) +847*a(n-5) -726*a(n-6) +132*a(n-7) +561*a(n-8) -869*a(n-9) +704*a(n-10) -362*a(n-11) +119*a(n-12) -23*a(n-13) +2*a(n-14) for n>17
%e Some solutions for n=7
%e ..0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..0
%e ..0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1....0..0..0..0
%e ..0..0..1..0....0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..1
%e ..0..0..1..0....0..1..0..1....0..0..1..0....0..1..0..1....0..0..0..1
%e ..0..0..1..1....1..0..1..1....0..0..1..1....0..1..1..0....0..0..1..0
%e ..0..1..0..0....1..0..1..1....0..1..1..0....1..1..0..0....0..0..1..1
%e ..0..1..0..0....0..1..1..0....0..1..1..0....1..1..0..0....1..1..0..0
%e ..1..1..1..1....1..1..0..1....1..1..1..0....1..1..1..1....1..1..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 02 2012