login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203408
Numbers which are both heptagonal and decagonal.
2
1, 540, 2887450, 1123674201, 6004054625647, 2336525434757970, 12484603034492528512, 4858482201068079159687, 25960009135002449017962445, 10102543266574986692211140472, 53980256514964477791853933850326, 21006844571867038996088473395797925
OFFSET
1,2
COMMENTS
As n increases, the ratios of consecutive terms settle into an approximate 2-cycle with a(n)/a(n-1) bounded above and below by 1/81*(216401+68432*sqrt(10)) and 1/81*(15761+4984*sqrt(10)) respectively.
FORMULA
G.f.: x(1+539*x+807548*x^2+10633*x^3+27*x^4) / ((1-x)*(1-1442*x+x^2)*(1+1442*x+x^2)).
a(n) = 2079362*a(n-2)-a(n-4)+818748.
a(n) = a(n-1)+2079362*a(n-2)-2079362*a(n-3)-a(n-4)+a(n-5).
a(n) = 1/320*((11-2*sqrt(10)*(-1)^n)*(1+sqrt(10))* (3+sqrt(10))^(4*n-3)+(11+2*sqrt(10)*(-1)^n)*(1-sqrt(10))*(3-sqrt(10))^(4*n-3)-126).
a(n) = floor(1/320*(11-2*sqrt(10)*(-1)^n)*(1+sqrt(10))* (3+sqrt(10))^(4*n-3)).
EXAMPLE
The second number that is both heptagonal and decagonal is 540. Hence a(2)=540.
MATHEMATICA
LinearRecurrence[{1, 2079362, -2079362, -1, 1}, {1, 540, 2887450, 1123674201, 6004054625647}, 15]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ant King, Jan 02 2012
STATUS
approved