login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203411 Discriminant of the cyclotomic binomial period polynomial for an odd prime. 2
1, 5, 49, 14641, 371293, 410338673, 16983563041, 41426511213649, 10260628712958602189, 756943935220796320321, 456487940826035155404146917, 4394336169668803158610484050361, 467056167777397914441056671494001, 6111571184724799803076702357055363809 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

LINKS

Table of n, a(n) for n=2..15.

Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257.  Mathematical Reviews, MR2312537.  Zentralblatt MATH, Zbl 1133.11012.

J. Brillhart, Note on the discriminant of certain cyclotomic period polynomials, Pacific Journal of Mathematics, 152/1(1992), 15-19.

L. Carlitz and F. R. Olson, Maillet's determinant, Proceedings of the American Mathematical Society, 6/2 (1955), 265-269.

L. Carlitz, A special determinant, Proceedings of the American Mathematical Society, 6/2 (1955), 270-272.

FORMULA

a(n) = prime(n)^((prime(n)-3)/2).

EXAMPLE

a(5) = 11^4 = 14641, because prime(5) = 11.

PROG

(PARI) a(n) = prime(n)^((prime(n)-3)/2); \\ Michel Marcus, Apr 15 2017

CROSSREFS

Cf. A152291.

Sequence in context: A075986 A251657 A084765 * A218322 A247707 A082795

Adjacent sequences:  A203408 A203409 A203410 * A203412 A203413 A203414

KEYWORD

nonn

AUTHOR

Franz Vrabec, Jan 01 2012

EXTENSIONS

More terms from Franklin T. Adams-Watters, Jan 24 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 10:49 EDT 2022. Contains 357147 sequences. (Running on oeis4.)