login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202538
Decimal expansion of the number x satisfying e^x-e^(-3x)=1.
2
3, 2, 2, 2, 8, 4, 6, 1, 5, 9, 7, 1, 0, 3, 0, 0, 6, 0, 0, 3, 6, 2, 3, 5, 4, 8, 6, 2, 8, 9, 1, 3, 9, 2, 3, 5, 4, 5, 5, 4, 4, 3, 1, 1, 4, 8, 0, 7, 4, 6, 3, 8, 6, 8, 3, 0, 3, 7, 2, 4, 5, 0, 6, 7, 0, 1, 4, 1, 5, 2, 2, 6, 1, 2, 9, 4, 3, 3, 8, 1, 6, 4, 6, 7, 8, 0, 0, 8, 9, 8, 7, 3, 2, 7, 2, 1, 6, 4, 6
OFFSET
0,1
COMMENTS
See A202537 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
x=0.32228461597103006003623548628913923545544311...
MATHEMATICA
u = 1; v = 3;
f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
RealDigits[r] (* A202538 *)
RealDigits[ Log[ Root[#^4 - #^3 - 1&, 2]], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
PROG
(PARI) log(polrootsreal(x^4-x^3-1)[2]) \\ Charles R Greathouse IV, May 15 2019
CROSSREFS
Cf. A202537.
Sequence in context: A090207 A378834 A364571 * A239736 A065437 A097721
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 21 2011
STATUS
approved