login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202212
Triangle read by rows: T(n,k) (1 <= k <= n-1, n >= 2) = d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3)), where d = A006882 is the double factorial function.
2
1, 3, 5, 15, 27, 33, 105, 195, 261, 279, 945, 1785, 2475, 2925, 2895, 10395, 19845, 28035, 34425, 37935, 35685, 135135, 259875, 371385, 465255, 533925, 562275, 509985, 2027025, 3918915, 5644485, 7158375, 8390025, 9218475, 9401805, 8294895, 34459425, 66891825, 96891795, 123898005, 147093975, 165209625, 176067675, 175313565, 151335135, 654729075, 1274998725, 1854727875, 2385808425, 2857013775, 3252014325, 3545408475, 3693650625, 3609649575, 3061162125
OFFSET
2,2
EXAMPLE
Triangle begins
1,
3, 5,
15, 27, 33,
105, 195, 261, 279,
945, 1785, 2475, 2925, 2895,
10395, 19845, 28035, 34425, 37935, 35685,
135135, 259875, 371385, 465255, 533925, 562275, 509985,
...
MAPLE
d:=doublefactorial;
a:=(n, k)-> d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3));
f:=n->[seq(a(n, k), k=1..n-1)];
for n from 1 to 10 do lprint(f(n)); od:
MATHEMATICA
a[n_, k_] := (2*(n-k)-1)!!*((2*n-2)!!/(2*(n-k)-2)!!-(2*n-3)!!/(2*(n-k)-3)!!); Table[a[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
CROSSREFS
Edges of triangle are A006882 and A129890.
Sequence in context: A349967 A321985 A301524 * A253790 A372430 A053351
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Dec 14 2011
STATUS
approved