login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) (1 <= k <= n-1, n >= 2) = d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3)), where d = A006882 is the double factorial function.
2

%I #15 Oct 12 2020 20:02:36

%S 1,3,5,15,27,33,105,195,261,279,945,1785,2475,2925,2895,10395,19845,

%T 28035,34425,37935,35685,135135,259875,371385,465255,533925,562275,

%U 509985,2027025,3918915,5644485,7158375,8390025,9218475,9401805,8294895,34459425,66891825,96891795,123898005,147093975,165209625,176067675,175313565,151335135,654729075,1274998725,1854727875,2385808425,2857013775,3252014325,3545408475,3693650625,3609649575,3061162125

%N Triangle read by rows: T(n,k) (1 <= k <= n-1, n >= 2) = d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3)), where d = A006882 is the double factorial function.

%H N. Ochiumi, <a href="http://infoshako.sk.tsukuba.ac.jp/~hachi/COS/cos2011/abst/ochiumi.pdf">On the total sum of number of nodes covering a given number of leaves in an unordered binary tree</a>.

%e Triangle begins

%e 1,

%e 3, 5,

%e 15, 27, 33,

%e 105, 195, 261, 279,

%e 945, 1785, 2475, 2925, 2895,

%e 10395, 19845, 28035, 34425, 37935, 35685,

%e 135135, 259875, 371385, 465255, 533925, 562275, 509985,

%e ...

%p d:=doublefactorial;

%p a:=(n,k)-> d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3));

%p f:=n->[seq(a(n,k),k=1..n-1)];

%p for n from 1 to 10 do lprint(f(n)); od:

%t a[n_, k_] := (2*(n-k)-1)!!*((2*n-2)!!/(2*(n-k)-2)!!-(2*n-3)!!/(2*(n-k)-3)!!); Table[a[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* _Jean-François Alcover_, Jan 08 2014 *)

%Y Edges of triangle are A006882 and A129890.

%K nonn,tabl

%O 2,2

%A _N. J. A. Sloane_, Dec 14 2011