login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202066
Mass of oriented maximal Wicks forms of genus n, multiplied by 6.
3
1, 35, 10010, 8083075, 13013750750, 35098085772750, 142849209095092500, 818490255812606251875, 6283276863788107326893750, 62273556997003931716843956250, 774241472911295609950819376787500, 11801375650850423334675364350683468750, 216435413840342786969740847520096250187500, 4702059365681447046917619912374091035323437500
OFFSET
1,2
LINKS
R. Bacher and A. Vdovina, Counting 1-vertex triangulations of oriented surfaces, Discrete Math. 246 (2002), 13-27.
EXAMPLE
1/6, 35/6, 5005/3, 8083075/6, 6506875375/3, 5849680962125, 23808201515848750, 272830085270868750625/2, 3141638431894053663446875/3, 31136778498501965858421978125/3, ...
MAPLE
m1:=g->2*(1/12)^g*(6*g-5)!/(g!*(3*g-3)!);
s1:=[seq(m1(g), g=1..50)]:
s1a:=[seq(numer(m1(g)), g=1..50)]; #A202067
s1b:=[seq(denom(m1(g)), g=1..50)]; #A202068
s2:=[seq(6*m1(g), g=1..20)]: #A202066
MATHEMATICA
m1[g_] := 2 (1/12)^g (6g-5)! / (g! (3g-3)!);
s1 = Table[m1[g], {g, 1, 50}]
s1a = Table[Numerator[m1[g]], {g, 1, 50}]; (* A202067 *)
s1b = Table[Denominator[m1[g]], {g, 1, 50}]; (* A202068 *)
s2 = Table[6 m1[g], {g, 1, 20}]; (* A202066 *) (* Jean-François Alcover, Sep 05 2018, from Maple *)
CROSSREFS
Sequence in context: A249888 A212025 A316940 * A271071 A249889 A030261
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 10 2011
STATUS
approved