OFFSET
0,3
LINKS
Robert Israel, Table of n, a(n) for n = 0..225
FORMULA
E.g.f. for aerated sequence: exp(-x^2/4)/(1-x^2)^(1/4).
a(n) ~ (2*n)! * 2^(1/4)*exp(-1/4)*Gamma(3/4)/((2*n)^(3/4)*Pi). - Vaclav Kotesovec, Sep 24 2013
a(n) = ((2n)!/n!)*2F0(1/4,-n;;4)*(-1/4)^n. - Benedict W. J. Irwin, May 24 2016
(4n^3-n)a(n-1) + (4n^2+2n)a(n) - a(n+1) = 0. - Robert Israel, Mar 02 2017
MAPLE
f:= gfun:-rectoproc({(4*n^3-n)*a(n-1) + (4*n^2+2*n)*a(n) - a(n+1)=0, a(0)=1, a(1)=0}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Mar 02 2017
MATHEMATICA
nn = 30; a = Log[1/(1 - x^2)^(1/4)] - x^2/4; Table[i, {i, 0, nn, 2}]! CoefficientList[Series[Exp[a], {x, 0, nn}], x][[Table[i, {i, 1, nn+1, 2}]]]
Table[((2 n)!/n!) HypergeometricPFQ[{1/4, -n}, {}, 4] (-1/4)^n, {n, 0, 15}] (* Benedict W. J. Irwin, May 24 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 10 2011
EXTENSIONS
a(14) and e.g.f. corrected by Robert Israel, Mar 02 2017
STATUS
approved