login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202065
The number of simple labeled graphs on 2n nodes whose connected components are even length cycles.
1
1, 0, 3, 60, 2835, 219240, 25519725, 4169185020, 910363278825, 256123949281200, 90240816705714675, 38923077574032151500, 20174526711617730727275, 12373285262231460281715000, 8863077725980930704895768125, 7332455066541096999983523547500
OFFSET
0,3
LINKS
FORMULA
E.g.f. for aerated sequence: exp(-x^2/4)/(1-x^2)^(1/4).
a(n) ~ (2*n)! * 2^(1/4)*exp(-1/4)*Gamma(3/4)/((2*n)^(3/4)*Pi). - Vaclav Kotesovec, Sep 24 2013
a(n) = ((2n)!/n!)*2F0(1/4,-n;;4)*(-1/4)^n. - Benedict W. J. Irwin, May 24 2016
(4n^3-n)a(n-1) + (4n^2+2n)a(n) - a(n+1) = 0. - Robert Israel, Mar 02 2017
MAPLE
f:= gfun:-rectoproc({(4*n^3-n)*a(n-1) + (4*n^2+2*n)*a(n) - a(n+1)=0, a(0)=1, a(1)=0}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Mar 02 2017
MATHEMATICA
nn = 30; a = Log[1/(1 - x^2)^(1/4)] - x^2/4; Table[i, {i, 0, nn, 2}]! CoefficientList[Series[Exp[a], {x, 0, nn}], x][[Table[i, {i, 1, nn+1, 2}]]]
Table[((2 n)!/n!) HypergeometricPFQ[{1/4, -n}, {}, 4] (-1/4)^n, {n, 0, 15}] (* Benedict W. J. Irwin, May 24 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 10 2011
EXTENSIONS
a(14) and e.g.f. corrected by Robert Israel, Mar 02 2017
STATUS
approved