The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201755 Decimal expansion of the least x satisfying -x^2+4=e^x. 3
 1, 9, 6, 4, 6, 3, 5, 5, 9, 7, 4, 8, 8, 8, 6, 4, 5, 0, 7, 6, 2, 2, 6, 5, 9, 6, 9, 2, 1, 1, 0, 9, 7, 7, 5, 8, 8, 3, 7, 5, 3, 0, 7, 5, 0, 6, 3, 7, 9, 4, 2, 2, 8, 1, 1, 5, 2, 1, 9, 7, 9, 5, 8, 3, 2, 3, 5, 7, 0, 1, 6, 4, 3, 2, 2, 0, 8, 8, 1, 3, 2, 7, 7, 9, 0, 4, 8, 2, 1, 7, 3, 5, 1, 7, 0, 4, 8, 3, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A201741 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least:  -1.96463559748886450762265969211097... greatest:  1.058006401090636308621387446123... MATHEMATICA a = -1; b = 0; c = 4; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -2.0, -1.9}, WorkingPrecision -> 110] RealDigits[r]    (* A201755 *) r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110] RealDigits[r]    (* A201756 *) CROSSREFS Cf. A201741. Sequence in context: A010544 A198869 A094130 * A021513 A195371 A154976 Adjacent sequences:  A201752 A201753 A201754 * A201756 A201757 A201758 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 01:48 EST 2020. Contains 331270 sequences. (Running on oeis4.)