login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201755 Decimal expansion of the least x satisfying -x^2+4=e^x. 3

%I

%S 1,9,6,4,6,3,5,5,9,7,4,8,8,8,6,4,5,0,7,6,2,2,6,5,9,6,9,2,1,1,0,9,7,7,

%T 5,8,8,3,7,5,3,0,7,5,0,6,3,7,9,4,2,2,8,1,1,5,2,1,9,7,9,5,8,3,2,3,5,7,

%U 0,1,6,4,3,2,2,0,8,8,1,3,2,7,7,9,0,4,8,2,1,7,3,5,1,7,0,4,8,3,0

%N Decimal expansion of the least x satisfying -x^2+4=e^x.

%C See A201741 for a guide to related sequences. The Mathematica program includes a graph.

%e least: -1.96463559748886450762265969211097...

%e greatest: 1.058006401090636308621387446123...

%t a = -1; b = 0; c = 4;

%t f[x_] := a*x^2 + b*x + c; g[x_] := E^x

%t Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -2.0, -1.9}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201755 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201756 *)

%Y Cf. A201741.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Dec 05 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 05:11 EST 2020. Contains 332217 sequences. (Running on oeis4.)