%I
%S 1,9,6,4,6,3,5,5,9,7,4,8,8,8,6,4,5,0,7,6,2,2,6,5,9,6,9,2,1,1,0,9,7,7,
%T 5,8,8,3,7,5,3,0,7,5,0,6,3,7,9,4,2,2,8,1,1,5,2,1,9,7,9,5,8,3,2,3,5,7,
%U 0,1,6,4,3,2,2,0,8,8,1,3,2,7,7,9,0,4,8,2,1,7,3,5,1,7,0,4,8,3,0
%N Decimal expansion of the least x satisfying x^2+4=e^x.
%C See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%e least: 1.96463559748886450762265969211097...
%e greatest: 1.058006401090636308621387446123...
%t a = 1; b = 0; c = 4;
%t f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t Plot[{f[x], g[x]}, {x, 3, 2}, {AxesOrigin > {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, 2.0, 1.9}, WorkingPrecision > 110]
%t RealDigits[r] (* A201755 *)
%t r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision > 110]
%t RealDigits[r] (* A201756 *)
%Y Cf. A201741.
%K nonn,cons
%O 1,2
%A _Clark Kimberling_, Dec 05 2011
