|
|
A201398
|
|
Decimal expansion of x satisfying x^2 + 3 = sec(x) and 0 < x < Pi.
|
|
2
|
|
|
1, 3, 6, 3, 5, 1, 9, 4, 6, 8, 4, 8, 6, 2, 0, 1, 8, 5, 7, 3, 5, 2, 2, 8, 1, 2, 8, 4, 5, 8, 4, 2, 3, 7, 8, 7, 7, 3, 2, 9, 5, 1, 4, 4, 9, 4, 6, 3, 1, 2, 5, 9, 4, 4, 8, 5, 3, 8, 7, 8, 9, 0, 6, 1, 7, 8, 7, 4, 8, 5, 4, 8, 4, 5, 6, 2, 7, 2, 1, 2, 4, 5, 7, 8, 9, 9, 5, 1, 3, 5, 3, 7, 2, 0, 8, 7, 7, 9, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
|
|
EXAMPLE
|
x=1.363519468486201857352281284584237877...
|
|
MATHEMATICA
|
a = 1; c = 3;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|