This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201074 Initial primes in prime quintuplets (p, p+2, p+6, p+8, p+12) preceding the maximal gaps in A201073. 3
 5, 11, 101, 1481, 22271, 55331, 536441, 661091, 1461401, 1615841, 5527001, 11086841, 35240321, 53266391, 72610121, 92202821, 117458981, 196091171, 636118781, 975348161, 1156096301, 1277816921, 1347962381, 2195593481, 3128295551 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Prime quintuplets (p, p+2, p+6, p+8, p+12) are one of the two types of densest permissible constellations of 5 primes. Maximal gaps between quintuplets of this type are listed in A201073; see more comments there. LINKS Alexei Kourbatov, Table of n, a(n) for n = 1..64 Tony Forbes, Prime k-tuplets G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923. Alexei Kourbatov, Maximal gaps between prime quintuplets (graphs/data up to 10^15) Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019. Eric W. Weisstein, k-Tuple Conjecture EXAMPLE The initial four gaps of 6, 90, 1380, 14580 (starting at p=5, 11, 101, 1481) form an increasing sequence of records. Therefore a(1)=5, a(2)=11, a(3)=101, and a(4)=1481. The next gap is smaller, so a new term is not added. CROSSREFS Cf. A022006 (prime quintuplets p, p+2, p+6, p+8, p+12), A201073, A233432. Sequence in context: A088268 A030085 A022006 * A056111 A090160 A062652 Adjacent sequences:  A201071 A201072 A201073 * A201075 A201076 A201077 KEYWORD nonn AUTHOR Alexei Kourbatov, Nov 26 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 15:59 EDT 2019. Contains 325185 sequences. (Running on oeis4.)