login
A201074
Initial primes in prime 5-tuples (p, p+2, p+6, p+8, p+12) preceding the maximal gaps in A201073.
3
5, 11, 101, 1481, 22271, 55331, 536441, 661091, 1461401, 1615841, 5527001, 11086841, 35240321, 53266391, 72610121, 92202821, 117458981, 196091171, 636118781, 975348161, 1156096301, 1277816921, 1347962381, 2195593481, 3128295551
OFFSET
1,1
COMMENTS
Prime quintuplets (p, p+2, p+6, p+8, p+12) are one of the two types of densest permissible constellations of 5 primes. Maximal gaps between quintuplets of this type are listed in A201073; see more comments there.
LINKS
Tony Forbes, Prime k-tuplets
G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
Alexei Kourbatov, Maximal gaps between prime 5-tuples (graphs/data up to 10^15)
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
Eric W. Weisstein, k-Tuple Conjecture
EXAMPLE
The initial four gaps of 6, 90, 1380, 14580 (starting at p=5, 11, 101, 1481) form an increasing sequence of records. Therefore a(1)=5, a(2)=11, a(3)=101, and a(4)=1481. The next gap is smaller, so a new term is not added.
CROSSREFS
Cf. A022006 (prime 5-tuples p, p+2, p+6, p+8, p+12), A201073, A233432.
Sequence in context: A088268 A030085 A022006 * A056111 A090160 A062652
KEYWORD
nonn
AUTHOR
Alexei Kourbatov, Nov 26 2011
STATUS
approved