login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201072 T(n,k)=Number of nXk 0..6 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other 8
7, 21, 21, 35, 70, 35, 35, 35, 35, 35, 21, 77, 514, 77, 21, 7, 749, 2611, 2611, 749, 7, 1, 972, 3937, 22440, 3937, 972, 1, 7, 127, 50334, 43308, 43308, 50334, 127, 7, 21, 3034, 4448, 1127514, 2250982, 1127514, 4448, 3034, 21, 35, 7161, 381982, 175865 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Table starts
..7...21......35........35.........21.............7.............1
.21...70......35........77........749...........972...........127
.35...35.....514......2611.......3937.........50334..........4448
.35...77....2611.....22440......43308.......1127514........175865
.21..749....3937.....43308....2250982......11512566.......3558888
..7..972...50334...1127514...11512566......45244488......76714325
..1..127....4448....175865....3558888......76714325....1001060834
..7.3034..381982..20393189..473983329....4070916182...13053459189
.21.7161..206357..14766300.4102010820...93433967419..126679336122
.35.2170.1377351.158314010.3773723044.1001816580924.1146503112430
LINKS
FORMULA
T(n,1) = binomial(7,n modulo 7). For a 0..z array, T(n,1) = binomial(z+1, n modulo (z+1)).
EXAMPLE
Some solutions for n=3 k=7
..0..0..1..1..3..4..5....0..0..1..1..3..4..4....0..0..1..1..2..4..4
..0..2..2..3..4..5..6....0..2..2..3..3..5..6....0..1..3..3..4..5..5
..1..2..3..4..5..6..6....1..2..4..5..5..6..6....2..2..3..5..6..6..6
CROSSREFS
Sequence in context: A266048 A233331 A158280 * A200935 A097182 A058525
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 26 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 20:08 EDT 2024. Contains 371963 sequences. (Running on oeis4.)