login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200715
Expansion of (-3*x^2 + x - 1)/(x^3 - 3*x^2 + x - 1).
2
1, 0, 0, 1, 1, -2, -4, 3, 13, 0, -36, -23, 85, 118, -160, -429, 169, 1296, 360, -3359, -3143, 7294, 13364, -11661, -44459, 3888, 125604, 69481, -303443, -386282, 593528, 1448931, -717935, -4471200, -868464, 11827201, 9961393, -26388674, -44445652, 44681763
OFFSET
0,6
COMMENTS
Peter Lawrence (see links) has posted a challenge to find a 3 X 3 integer matrix with "smallish" elements whose powers generate a sequence that is not in the OEIS. This sequence is one of the solutions found.
|a(n)| is a prime number for n in {5, 7, 8, 11, 19, 27, 108, 276, 371, 608, ...} with values {2, 3, 13, 23, 3359, 69481, 167527749243856707416101, ...}.
LINKS
Peter Lawrence et al., sequence challenge and follow-up messages on the SeqFan list, Nov 21 2011
FORMULA
G.f.: (-3*x^2 + x - 1)/(x^3 - 3*x^2 + x - 1).
Term (1,1) in the 3 X 3 matrix [0,1,0; 0,0,1; 1,-3,1]^n.
a(n) = a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=a(2)=0. - Harvey P. Dale, Nov 22 2011
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <1|-3|1>>^n)[1, 1]:
seq(a(n), n=0..50);
MATHEMATICA
CoefficientList[Series[(-3x^2+x-1)/(x^3-3x^2+x-1), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, -3, 1}, {1, 0, 0}, 40] (* Harvey P. Dale, Nov 22 2011 *)
PROG
(PARI) Vec((-3*x^2+x-1)/(x^3-3*x^2+x-1)+O(x^99)) \\ Charles R Greathouse IV, Nov 22 2011
CROSSREFS
Sequence in context: A181327 A257503 A091861 * A297901 A079308 A189825
KEYWORD
sign,easy,changed
AUTHOR
Alois P. Heinz, Nov 21 2011
STATUS
approved