|
|
A200361
|
|
Decimal expansion of least x>0 satisfying 2*x^2+x+2=tan(x).
|
|
2
|
|
|
1, 4, 3, 9, 7, 1, 8, 2, 0, 2, 0, 7, 1, 9, 7, 6, 6, 7, 0, 3, 4, 9, 2, 6, 1, 3, 2, 4, 1, 4, 8, 3, 7, 8, 3, 0, 3, 1, 3, 0, 6, 8, 9, 2, 4, 3, 4, 3, 9, 0, 6, 3, 8, 8, 5, 0, 1, 4, 9, 4, 8, 3, 8, 0, 2, 3, 3, 0, 8, 5, 6, 3, 8, 1, 3, 0, 7, 3, 2, 6, 5, 2, 7, 4, 9, 4, 5, 2, 3, 1, 3, 5, 5, 7, 2, 8, 1, 8, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A200338 for a guide to related sequences. The Mathematica program includes a graph.
|
|
LINKS
|
Table of n, a(n) for n=1..99.
|
|
EXAMPLE
|
x=1.439718202071976670349261324148378303130...
|
|
MATHEMATICA
|
a = 2; b = 1; c = 2;
f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r] (* A200361 *)
|
|
CROSSREFS
|
Cf. A200338.
Sequence in context: A010655 A123596 A309460 * A222471 A180858 A263193
Adjacent sequences: A200358 A200359 A200360 * A200362 A200363 A200364
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Nov 17 2011
|
|
STATUS
|
approved
|
|
|
|