login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199944
Number of -n..n arrays x(0..2) of 3 elements with zeroth through 2nd differences all nonzero.
1
2, 36, 142, 376, 778, 1404, 2294, 3504, 5074, 7060, 9502, 12456, 15962, 20076, 24838, 30304, 36514, 43524, 51374, 60120, 69802, 80476, 92182, 104976, 118898, 134004, 150334, 167944, 186874, 207180, 228902, 252096, 276802, 303076, 330958, 360504
OFFSET
1,1
COMMENTS
Row 3 of A199943.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
Conjectures from Colin Barker, May 17 2018: (Start)
G.f.: 2*x*(1 + 15*x + 19*x^2 + 13*x^3) / ((1 - x)^4*(1 + x)).
a(n) = 6*n - 10*n^2 + 8*n^3 for n even.
a(n) = -2 + 6*n - 10*n^2 + 8*n^3 for n odd.
(End)
EXAMPLE
Some solutions for n=6:
..5....2...-6...-6....1....5...-1....2....6....2...-3...-6...-4....1....5...-3
.-4....1...-3....3...-6....6...-2...-5...-2....4....3....2....1....4....3...-5
.-2...-1....6...-5....1....1....4....2....3....1...-5...-1...-5....6....6....3
CROSSREFS
Cf. A199943.
Sequence in context: A187509 A134785 A143745 * A357445 A227927 A007757
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 12 2011
STATUS
approved