login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199945
Number of -n..n arrays x(0..3) of 4 elements with zeroth through 3rd differences all nonzero.
1
2, 104, 660, 2474, 6604, 14696, 28490, 50448, 83092, 129642, 193292, 278240, 388258, 528328, 703140, 918330, 1179228, 1492584, 1864202, 2301584, 2811588, 3402266, 4081084, 4857344, 5738882, 6735720, 7856884, 9112842, 10513196, 12069800
OFFSET
1,1
COMMENTS
Row 4 of A199943.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +2*a(n-2) -3*a(n-4) -3*a(n-5) +3*a(n-6) +3*a(n-7) -2*a(n-9) -a(n-10) +a(n-11).
Empirical g.f.: 2*x*(1 + 51*x + 276*x^2 + 803*x^3 + 1408*x^4 + 1731*x^5 + 1436*x^6 + 825*x^7 + 303*x^8 + 78*x^9) / ((1 - x)^5*(1 + x)^2*(1 + x + x^2)^2). - Colin Barker, May 17 2018
EXAMPLE
Some solutions for n=6:
..2...-5...-6...-1....4....1...-4...-4...-3....6....1....1...-5....5...-1....4
..1....1...-3...-5....3...-5...-3....5...-6...-6...-2...-5...-3...-1....6...-6
.-5....6....1...-2...-6...-4...-5....2....1...-5....5....1...-2...-4...-6...-5
..3....4....3....2...-3....5....2...-5....3...-1....1...-1....3....4...-4...-6
CROSSREFS
Cf. A199943.
Sequence in context: A246775 A281053 A101530 * A346165 A265655 A001184
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 12 2011
STATUS
approved