login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007757 Dwork-Kontsevich sequence evaluated at 2n. 3
1, 2, 36, 144, 1440, 17280, 241920, 29030400, 1567641600, 156764160000, 217275125760000, 1738201006080000, 45193226158080000, 3796230997278720000, 113886929918361600000, 1822190878693785600000, 22489479824838701875200000, 28336744579296764362752000000, 1076796294013277045784576000000, 1679802218660712191423938560000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For n positive, put A_n(z)= sum_j (nj)!/(j!^n) *z^j, B_n(z)= sum_j (nj)!/(j!^n) *z^j * (sum_{j<k<=jn} (1/k)) and let b(n) be the largest integer for which exp(B_n(z)/(b(n)A_n(z))) has integral coefficients. The sequence is b(2n).

A formula, conditional on a widely believed conjecture, can be found in the Krattenthaler-Rivoal paper; see Theorem 4 with k=1 and the remarks on top of page 8. Since Borcherds defined a sequence b(n), but then only entered b(2n) in the Encyclopedia, the formula has to be taken with n replaced by 2n. - Christian Krattenthaler (Christian.Krattenthaler(AT)univie.ac.at), Sep 12 2007

LINKS

Table of n, a(n) for n=1..20.

Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, preprint, arXiv:0709.1432 [math.NT], 2007-2009.

EXAMPLE

G.f. = x + 2*x^2 + 36*x^3 + 144*x^4 + 1440*x^5 + 17280*x^6 + 241920*x^7 + ...

MATHEMATICA

a[n0_] := Module[{A, MM = 2, n = 2n0, c1, c2}, A = Exp[Sum[x^j (n j)!/ (j!^n) Sum[1/k, {k, j+1, j n}], {j, 0, MM}]/Sum[x^j (n j)!/(j!^n), {j, 0, MM}]]; c1 = SeriesCoefficient[A, {x, 0, 1}]; c2 = SeriesCoefficient[A, {x, 0, 2}]; GCD[c1, (c1 + c1^2)/2 - c2]];

Array[a, 20] (* Jean-Fran├žois Alcover, Dec 17 2018, from PARI *)

PROG

(PARI) {a(n) = my(A, MM=2, c1, c2); if(n<1, 0, n*=2; A = x * O(x^MM); A = exp( sum(j=0, MM, x^j * (n*j)! / (j!^n) * sum(k=j+1, j*n, 1/k), A) / sum(j=0, MM, x^j * (n*j)! / (j!^n), A)); c1 = polcoeff(A, 1); c2 = polcoeff(A, 2); gcd(c1, (c1 + c1^2)/2 - c2))}; /* Michael Somos, Nov 16 2006 */

CROSSREFS

Cf. A131657, A131658, A056612.

Sequence in context: A143745 A199944 A227927 * A141217 A206688 A226419

Adjacent sequences:  A007754 A007755 A007756 * A007758 A007759 A007760

KEYWORD

nonn

AUTHOR

Richard E. Borcherds (reb(AT)math.berkeley.edu)

EXTENSIONS

Definition in comment line, PARI code and terms of sequence corrected by Christian Krattenthaler (christian.krattenthaler(AT)univie.ac.at), Sep 30 2007

a(8) corrected by Sean A. Irvine, Jan 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 17:47 EDT 2019. Contains 324353 sequences. (Running on oeis4.)