login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199883
Number of distinct values taken by 6th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
7
1, 1, 2, 4, 9, 20, 48, 113, 262, 591, 1263, 2505, 4764, 8479, 14285, 22871, 35316, 52755, 76517, 107826, 148914, 202715, 270622
OFFSET
1,3
EXAMPLE
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 6th derivative at x=1: (x^(x^(x^x))) -> 2934; ((x^x)^(x^x)), ((x^(x^x))^x) -> 4908; (x^((x^x)^x)) -> 5034; (((x^x)^x)^x) -> 8322.
MAPLE
f:= proc(n) option remember;
`if`(n=1, {[0, 0, 0, 0, 0]},
{seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2],
8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3],
10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2]
+15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4],
45*h[1]*g[1]^2+(120+60*h[2]+15*h[3]+60*g[2]+
270*h[1])*g[1]+54+15*h[3]+30*g[3]+6*g[4]+
60*h[1]*g[2]+15*h[1]*g[3]+30*h[1]+ 20*h[2]*g[2]+
100*h[2]+90*h[1]^2+g[5]+60*g[2]+6*h[4]],
h=f(n-j)), g=f(j)), j=1..n-1)})
end:
a:= n-> nops(map(x-> x[5], f(n))):
seq(a(n), n=1..15);
CROSSREFS
Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A199296 (5th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215836. Column k=6 of A216368.
Sequence in context: A318799 A318852 A052329 * A036624 A226907 A186952
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Nov 11 2011
EXTENSIONS
a(22)-a(23) from Alois P. Heinz, Sep 26 2014
STATUS
approved