login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct values taken by 6th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
7

%I #15 Sep 26 2014 16:34:56

%S 1,1,2,4,9,20,48,113,262,591,1263,2505,4764,8479,14285,22871,35316,

%T 52755,76517,107826,148914,202715,270622

%N Number of distinct values taken by 6th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.

%e a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 6th derivative at x=1: (x^(x^(x^x))) -> 2934; ((x^x)^(x^x)), ((x^(x^x))^x) -> 4908; (x^((x^x)^x)) -> 5034; (((x^x)^x)^x) -> 8322.

%p f:= proc(n) option remember;

%p `if`(n=1, {[0, 0, 0, 0, 0]},

%p {seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2],

%p 8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3],

%p 10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2]

%p +15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4],

%p 45*h[1]*g[1]^2+(120+60*h[2]+15*h[3]+60*g[2]+

%p 270*h[1])*g[1]+54+15*h[3]+30*g[3]+6*g[4]+

%p 60*h[1]*g[2]+15*h[1]*g[3]+30*h[1]+ 20*h[2]*g[2]+

%p 100*h[2]+90*h[1]^2+g[5]+60*g[2]+6*h[4]],

%p h=f(n-j)), g=f(j)), j=1..n-1)})

%p end:

%p a:= n-> nops(map(x-> x[5], f(n))):

%p seq(a(n), n=1..15);

%Y Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A199296 (5th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215836. Column k=6 of A216368.

%K nonn,more

%O 1,3

%A _Alois P. Heinz_, Nov 11 2011

%E a(22)-a(23) from _Alois P. Heinz_, Sep 26 2014