login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199867
Decimal expansion of x > 0 satisfying 4*x^2 - 2*x*cos(x) = sin(x).
2
6, 3, 5, 7, 9, 4, 2, 3, 3, 9, 7, 1, 9, 2, 6, 5, 5, 1, 4, 3, 5, 4, 2, 6, 6, 4, 2, 1, 0, 0, 1, 5, 9, 2, 2, 3, 2, 3, 8, 8, 1, 5, 0, 3, 7, 1, 6, 5, 9, 8, 8, 6, 8, 9, 6, 3, 7, 8, 9, 2, 5, 4, 1, 7, 8, 0, 3, 0, 3, 4, 3, 4, 0, 1, 4, 0, 4, 0, 9, 4, 6, 6, 6, 4, 9, 4, 2, 7, 1, 1, 3, 1, 7, 4, 3, 1, 3, 0, 4, 5, 5, 6, 7, 6, 9, 7
OFFSET
0,1
COMMENTS
See A199597 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
0.63579423397192655143542664210015922323...
MATHEMATICA
a = 4; b = -2; c = 1;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .63, .64}, WorkingPrecision -> 110]
RealDigits[r] (* A199867 *)
CROSSREFS
Cf. A199597.
Sequence in context: A245273 A199728 A373548 * A171030 A294386 A217769
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 11 2011
EXTENSIONS
a(90) onwards corrected by Georg Fischer, Aug 03 2021
STATUS
approved