login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199291 Decimal expansion of x<0 satisfying 3*x^2+3*x*cos(x)=1. 3
9, 4, 2, 0, 1, 3, 1, 7, 1, 7, 4, 5, 9, 2, 5, 4, 7, 0, 2, 7, 8, 3, 8, 5, 4, 7, 8, 8, 1, 6, 3, 3, 3, 9, 0, 3, 0, 6, 4, 8, 6, 9, 2, 9, 1, 2, 9, 9, 0, 4, 0, 5, 4, 1, 8, 0, 5, 3, 8, 2, 4, 1, 4, 7, 3, 2, 3, 5, 1, 2, 6, 9, 1, 1, 5, 1, 8, 2, 2, 1, 7, 9, 0, 8, 7, 1, 5, 2, 9, 8, 1, 8, 6, 1, 5, 6, 2, 8, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199170 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

negative: -0.942013171745925470278385478816333...

positive:  0.2701502896318032580209778461269860...

MATHEMATICA

a = 3; b = 3; c = 1;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]

RealDigits[r]     (* A199291 *)

r = x /. FindRoot[f[x] == g[x], {x, .27, .28}, WorkingPrecision -> 110]

RealDigits[r]    (* A199292 *)

CROSSREFS

Cf. A199170.

Sequence in context: A292684 A330274 A248197 * A091661 A011313 A319530

Adjacent sequences:  A199288 A199289 A199290 * A199292 A199293 A199294

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 00:19 EST 2020. Contains 332195 sequences. (Running on oeis4.)