login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199086
T(n,k) = Number of partitions of n+2k-2 into parts >= k.
1
1, 1, 2, 1, 2, 3, 1, 2, 2, 5, 1, 2, 2, 4, 7, 1, 2, 2, 3, 4, 11, 1, 2, 2, 3, 4, 7, 15, 1, 2, 2, 3, 3, 5, 8, 22, 1, 2, 2, 3, 3, 5, 6, 12, 30, 1, 2, 2, 3, 3, 4, 5, 9, 14, 42, 1, 2, 2, 3, 3, 4, 5, 7, 10, 21, 56, 1, 2, 2, 3, 3, 4, 4, 6, 8, 13, 24, 77, 1, 2, 2, 3, 3, 4, 4, 6, 7, 11, 17, 34, 101, 1, 2, 2, 3, 3, 4, 4, 5
OFFSET
1,3
COMMENTS
Row n goes to floor(n/2)+1
Table starts
...1...1...1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1
...2...2...2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2
...3...2...2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2
...5...4...3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3
...7...4...4..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3
..11...7...5..5..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4
..15...8...6..5..5..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4
..22..12...9..7..6..6..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5
..30..14..10..8..7..6..6..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5
..42..21..13.11..9..8..7..7..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6
..56..24..17.12.10..9..8..7..7..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6
..77..34..21.16.13.11.10..9..8..8..7..7..7..7..7..7..7..7..7..7..7..7..7..7..7
.101..41..25.18.15.12.11.10..9..8..8..7..7..7..7..7..7..7..7..7..7..7..7..7..7
.135..55..33.24.18.16.13.12.11.10..9..9..8..8..8..8..8..8..8..8..8..8..8..8..8
.176..66..39.27.21.17.15.13.12.11.10..9..9..8..8..8..8..8..8..8..8..8..8..8..8
.231..88..49.34.26.21.18.16.14.13.12.11.10.10..9..9..9..9..9..9..9..9..9..9..9
.297.105..60.39.30.24.20.17.16.14.13.12.11.10.10..9..9..9..9..9..9..9..9..9..9
.385.137..73.50.36.29.24.21.18.17.15.14.13.12.11.11.10.10.10.10.10.10.10.10.10
.490.165..88.57.42.32.27.23.20.18.17.15.14.13.12.11.11.10.10.10.10.10.10.10.10
.627.210.110.70.50.40.32.27.24.21.19.18.16.15.14.13.12.12.11.11.11.11.11.11.11
LINKS
R. H. Hardin and Alois P. Heinz, Table of n, a(n) for n = 1..10011
FORMULA
G.f. of column k: x^(2-2*k) * Product_{j>=k} 1/(1-x^j). - Alois P. Heinz, Nov 06 2011
EXAMPLE
All solutions for n=5, k=3: 3+3+3, 3+6, 4+5, 9.
MAPLE
b:= proc(n, i) option remember;
if n<0 then 0
elif n=0 then 1
elif i>n then 0
else b(n-i, i) +b(n, i+1)
fi
end:
T:= (n, k)-> b(n+2*k-2, k):
seq(seq(T(n, d+1-n), n=1..d), d=1..20); # Alois P. Heinz, Nov 06 2011
MATHEMATICA
b[n_, i_] := b[n, i] = Which[n < 0, 0, n == 0, 1, i > n, 0, True, b[n - i, i] + b[n, i + 1]]; T[n_, k_] := b[n + 2*k - 2, k]; Table[Table[T[n, d + 1 - n], {n, 1, d}], {d, 1, 20}] // Flatten (* Jean-François Alcover, Jan 23 2016, after Alois P. Heinz *)
CROSSREFS
Column 1 is A000041
Column 2 is A002865(n+2)
Column 3 is A008483(n+4)
Column 4 is A008484(n+6)
Column 5 is A026798(n+13)
Column 6 is A026799(n+16)
Column 7 is A026800(n+19)
Column 8 is A026801(n+22)
Column 9 is A026802(n+25)
Column 10 is A026803(n+28)
Sequence in context: A275723 A198338 A357554 * A098053 A272907 A128117
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 06 2011
STATUS
approved