login
A199077
Decimal expansion of x>0 satisfying 3*x^2+sin(x)=1.
3
4, 3, 8, 0, 9, 5, 8, 9, 7, 4, 2, 1, 3, 4, 0, 4, 5, 2, 7, 3, 0, 7, 2, 2, 5, 9, 0, 3, 6, 5, 4, 4, 5, 6, 4, 2, 4, 0, 7, 9, 0, 3, 3, 6, 7, 7, 9, 6, 3, 6, 8, 6, 4, 0, 2, 4, 3, 6, 2, 9, 7, 8, 9, 3, 6, 7, 2, 7, 6, 1, 3, 3, 7, 2, 7, 9, 6, 1, 1, 4, 1, 4, 4, 1, 0, 4, 3, 1, 3, 0, 2, 6, 7, 1, 8, 9, 9, 5, 1
OFFSET
0,1
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -0.74844244701581115464359646501040627441...
positive: 0.438095897421340452730722590365445642407...
MATHEMATICA
a = 3; b = 1; c = 1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.75, -.74}, WorkingPrecision -> 110]
RealDigits[r](* A199060 *)
r = x /. FindRoot[f[x] == g[x], {x, .43, .44}, WorkingPrecision -> 110]
RealDigits[r](* A199077 *)
CROSSREFS
Cf. A198866.
Sequence in context: A092193 A277117 A155910 * A345133 A016703 A236266
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 03 2011
STATUS
approved