The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199080 Decimal expansion of x < 0 satisfying x^2 + 2*sin(x) = 1. 3
 1, 7, 2, 5, 1, 7, 1, 2, 0, 5, 4, 2, 8, 9, 3, 0, 1, 2, 7, 1, 3, 4, 4, 2, 4, 0, 0, 2, 0, 6, 3, 2, 3, 1, 6, 2, 3, 5, 0, 8, 1, 1, 9, 4, 2, 4, 8, 7, 6, 9, 8, 3, 8, 6, 0, 5, 5, 8, 4, 1, 7, 0, 8, 5, 7, 9, 5, 5, 2, 6, 1, 3, 8, 2, 7, 8, 3, 6, 5, 4, 5, 7, 7, 1, 1, 2, 5, 3, 1, 6, 2, 3, 6, 0, 1, 3, 6, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A198866 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE negative: -1.7251712054289301271344240020632... positive:  0.42302818188516042885129332473260... MATHEMATICA a = 1; b = 2; c = 1; f[x_] := a*x^2 + b*Sin[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.8, -1.7}, WorkingPrecision -> 110] RealDigits[r]   (* this sequence *) r = x /. FindRoot[f[x] == g[x], {x, .42, .43}, WorkingPrecision -> 110] RealDigits[r]   (* A199081 *) PROG (PARI) a=1; b=2; c=1; solve(x=-2, 0, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019 (Sage) a=1; b=2; c=1; (a*x^2 + b*sin(x)==c).find_root(-2, 0, x) # G. C. Greubel, Feb 20 2019 CROSSREFS Cf. A198866, A199081. Sequence in context: A117237 A155697 A011477 * A093072 A066903 A194886 Adjacent sequences:  A199077 A199078 A199079 * A199081 A199082 A199083 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 09:19 EST 2020. Contains 332301 sequences. (Running on oeis4.)