

A198998


Decimal expansion of x>0 satisfying 4*x^23*cos(x)=3.


2



1, 0, 5, 7, 4, 9, 3, 6, 1, 7, 2, 6, 8, 8, 4, 0, 3, 6, 5, 4, 9, 7, 9, 5, 2, 6, 8, 3, 6, 5, 8, 5, 6, 1, 5, 0, 5, 1, 5, 1, 1, 3, 0, 6, 7, 1, 6, 3, 0, 5, 2, 1, 0, 9, 2, 9, 3, 1, 8, 6, 1, 8, 5, 3, 1, 3, 7, 0, 6, 0, 5, 2, 6, 4, 5, 7, 5, 2, 6, 6, 7, 2, 9, 8, 1, 4, 2, 7, 7, 0, 6, 8, 7, 0, 3, 8, 1, 7, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

See A198755 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.057493617268840365497952683658561505151130...


MATHEMATICA

a = 4; b = 3; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.05, 1.06}, WorkingPrecision > 110]
RealDigits[r] (* A198998 *)


CROSSREFS

Cf. A198755.
Sequence in context: A198985 A021639 A232975 * A096437 A096458 A123489
Adjacent sequences: A198995 A198996 A198997 * A198999 A199000 A199001


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 01 2011


STATUS

approved



